How New Equipment Has Improved the Silicon Nitride Wet Etching Process

how-new-equipment-has-improved-the-silicon-nitride-wet-etching-processThe silicon nitride wet etching process is difficult to control safely but is a key component of semiconductor wafer manufacturing. The process uses phosphoric acid to remove silicon nitride masks from silicon wafers to allow the clean wafers to undergo further fabrication steps. The hot phosphoric acid and water mixture is unstable and requires periodic addition of small quantities of water, but adding water to phosphoric acid may produce a bump. Modutek has developed a new approach to control the nitride etching process safely and accurately while achieving high etching rates.

How the Silicon Nitride Wet Etching Process Works

The etching of silicon nitride masks with phosphoric acid is optimized at a temperature of 160 degrees centigrade for a mixture of 85 percent acid and 15 percent deionized water. At this temperature, the mixture boils and some water is lost as steam. The lost water has to periodically be replaced, but adding water to phosphoric acid can be dangerous. The water may not immediately mix with the acid, instead forming a film on top of the mixture. If the film suddenly mixes with the acid, introducing a large amount of water into the mixture at once, a bump can result.

In order to optimize etching performance small amounts of water are added periodically which immediately mix with the acid to maintain the temperature at the ideal 160 degrees centigrade. If too much water is added, the temperature of the mixture may drop and the mixture may stop boiling, allowing the water film to form and create a dangerous situation. If too little water is added, the temperature of the mixture will increase and even more water will be lost. Modutek has new equipment provides an innovative control strategy that addresses these issues and delivers excellent etching performance.

Modutek’s Nb Series Silicon Nitride Wet Etching Bath

Modutek’s new Nb series bath provides tight control of the bath temperature while ensuring a safe operation and superior etching of the silicon nitride masks. In addition to the new control strategy, the series Nb baths offer additional safety features that make sure the dangerous condition in which large amounts of water are mixed with hot phosphoric acid is avoided.

In their new silicon nitride wet etching equipment, Modutek uses the acid mixture concentration as a reference value for adding small amounts of deionized water. At normal operation, the bath heater is on and the mixture is always boiling at the normal mixture boiling point of 160 degrees centigrade.

The boiling point of the mixture varies with the concentration. As water is lost and the mixture concentration rises, the boiling point increases as well and the mixture temperature starts to rise above 160 degrees centigrade. This rise triggers the addition of a small amount of deionized water. Since the mixture is always boiling because the heater is always on, the deionized water is immediately mixed in with the boiling acid, the concentration of the acid is reduced and the mixture boiling point decreases back down to 160 degrees centigrade.

To guard against the addition of water when the mixture is not boiling, a thermocouple sensor above the boiling mixture detects the presence of steam and closes the water valve when no steam is present. This additional safety feature ensures that a dangerous water film cannot form even under abnormal conditions such as heather failure.

Modutek has been testing and fine tuning the new system with Nb silicon nitride wet etching baths to customers in manual, semi automated and fully automated wet bench stations. Semiconductor fabrication facilities and research centers using the new equipment have achieved an average etch rate of 65 angstroms per minute while limiting oxide etch as the controls ensure safe operation at a consistent and optimum operating point.

 

 

How Silicon Wet Etching Processes Are Improved with Specialized Equipment

how-silicon-wet-etching-processes-are-improved-with-specialized-equipmentWhile Modutek’s wet bench equipment supports all common wet etching processes, the continuous development of new wet bench technologies allows the company to offer specialized equipment that can improve performance for specific applications. Key factors for high output quality, fast processing, high yields and reliable outcomes are cleanliness, repeatability, tight control and precise dosages. Modutek’s standard line of silicon wet etching equipment already scores highly on these factors but the company’s specialized equipment can further improve performance for certain processes.

Buffered Oxide Etch (BOE)

The BOE process requires tight and precise temperature control while filtering lowers the particulate count and reduced acid consumption results in lower costs. Modutek’s F-series sub-ambient circulation bath is specially designed for BOE applications and addresses these factors. The temperature controller is accurate to less than plus/minus one degree centigrade in a range from 10 to 60 degrees centigrade with sub-ambient capability. The circulating bath includes 10.0 to 0.2 micron filtration and is designed for low acid consumption. Using a wet bench system specialized for the BOE process can reduce costs and defects in products while providing safe and reliable operation.

Piranha Etching

The sulfuric acid/hydrogen peroxide mixture of the Piranha solution is extremely corrosive, and the mixture is exothermic when first prepared. The Modutek QFa Series of Quartz High Temperature Recirculating Baths are ideal for withstanding the high temperatures, first of the initial heating after mixing and then during the process that is heated to preserve mixture reactivity. The baths have heaters that can raise the temperature of the mixture by two degrees Centigrade per minute and the temperature controller can maintain the temperature at plus/minus one degree centigrade over a range of 30 to 180 degrees centigrade. These Modutek quartz baths are characterized by the high degree of safety, reliable operation and low cost of ownership.

Potassium Hydroxide (KOH) Etching

Modutek Teflon tanks are ideal for use in KOH etching because they can be custom fitted to any wet bench configuration and come in three models to satisfy common heating and recirculating requirements. The TFa and TI series of Teflon tanks are temperature controlled to an accuracy of plus/minus 0.5 degrees centigrade over a range of 30 to 100 degrees centigrade. The TFa series are overflow re-circulating models while the TI series are static. The TT series are static ambient temperature models. All Teflon tanks are made from PFA Teflon with special welding techniques to minimize the presence of undesirable by-products in the process and to reduce contamination. Modutek’s Teflon tanks improve KOH process control, increasing reliability and reproducibility of process conditions.

Silicon Nitride Etching

Etching silicon nitride with a phosphoric acid deionized water mixture is challenging because the concentration changes as the deionized water evaporates and because adding water to the process can cause an explosion. Modutek’s silicon nitride wet etching bath is specially designed to address these issues and provide reliable and safe process control. The mixture is kept at the boiling point, which changes as the concentration increases. Depending on the temperature of the mixture, small amounts of deionized water are added to the boiling mixture to maintain the concentration at the required level. Using the boiling point temperature as an indication of the concentration and allowing the boiling mixture to immediately distribute small amounts of water lets Modutek control the process while maintaining safe operation.

With its extensive experience in silicon wet etching process technology, Modutek can deliver specialized equipment suited to a particular process and help customers select the right equipment for their applications. With equipment specially designed for the process used, customers obtain superior results while often saving money as well. Contact Modutek for a free consultation or quote on using the right silicon wet etching equipment for your application.

 

Why Teflon Tanks Are Used with the KOH Etching Process

KOH etching is a preferred silicon wafer fabrication method because it works rapidly and reliably while handling of the chemicals is relatively safe. The process relies on a contamination-free environment and uses the temperature and KOH concentration to control the etching speed. Teflon tanks are used in this process because the Teflon is stable and doesn’t degrade. The KOH etching process controls allow accurate and repeatable temperature control for reliable fabrication results and high-quality production. KOH etching in Teflon tanks with temperature control is an excellent process for silicon wafer nanostructure fabrication in both manufacturing facilities and research environments.

How KOH Etching Works

KOH or potassium hydroxide etches silicon quickly and at a constant rate that depends on the concentration of the solution and the temperature of the liquid. In addition to these controllable variables, silicon etching is influenced by the crystal planes of the silicon and the doping concentration. These factors can be used to direct etching in certain directions and to stop etching at given points. The result is that KOH etching can produce the precise nanostructures needed as long as the crystal planes and doping are used correctly.

The controllable variables have to be kept tightly to set values and variations have to be minimized. Important factors are the maintenance of the KOH solution at the desired concentration and temperature. The Teflon tanks have to be designed to support the consistent and accurate etching necessary for defect-free wafer fabrication.

Modutek Teflon Tank Features

Modutek Teflon tanks are designed to support KOH etching leading to wafer fabrication of the highest quality. The temperature-controlled tanks are available in re-circulating and static versions and come in standard sizes for single or double carrier capacities as well as in custom sizes when required. The re-circulating tanks have an all-Teflon fluid path, and in the available custom configurations, are easy to integrate into existing fabrication lines.

Modutek Teflon tanks eliminate contamination from the tanks or fluid paths by ensuring the KOH solution only comes into contact with Teflon, which in unaffected by the corrosive chemical. In addition, Teflon welding for the tanks is carried out with advanced PFA sheet welding techniques that reduce impurities and by-products. The result is that the KOH solution stays pure.

A key element of the KOH etching process control is the initial concentration of the KOH solution and keeping it constant throughout the process step. Modutek Teflon tanks have sealed lids that minimize water loss, even during lengthy etching. Water condensing systems and de-ionized water spiking systems are available if the application requires it.

The other variable affecting the etch rate is the temperature of the KOH solution. Modutek tanks have either inline heating or immersion heating in the overflow weir. Temperature can be controlled between 30 and 100 degrees Centigrade with an accuracy of plus/minus 0.5 degrees Centigrade. Heating is rapid with an average heat-up rate of 2 to 3 degrees Centigrade per minute depending on the details of the installation. Rapid heating and tight control result in superior etching performance and consistent output.

To make operation of the KOH etching flexible and convenient, the Modutek Teflon tanks systems have standard drain interlocks and low level, high limit, and high-temperature alarms. Temperature process controllers and remote operation timers are also available.

Modutek Teflon KOH tanks are designed specifically for applications such as KOH etching and Modutek can supply custom systems specially adapted to customer requirements. Tank sizes and controls can be designed to match customer applications. Modutek can rely on its experience and expertise to supply KOH etching systems that meet the highest quality standards and deliver the best output possible.

 

How the Silicon Nitride Wet Etching Process is Improved by Modutek

Silicon nitride is used as a mask when etching silicon wafers during the semiconductor manufacturing process. Before the silicon wafer can be processed further, the silicon nitride has to be removed. A solution of phosphoric acid and de-ionized water etches the silicon nitride while leaving the wafer unaffected. As a result, the silicon nitride is stripped from the wafer surface and a clean wafer is left for further fabrication steps.

To optimize the silicon nitride wet etching process, the phosphoric acid solution is kept at a high temperature. This means some of the de-ionized water boils off as steam and has to be replaced. Adding water to phosphoric acid can be extremely dangerous and can result in an explosion. In addition, keeping the temperature of the solution constant is important for accurate control of the stripping process. Modutek has improved both the safety and the control of the nitride wet etching process with its Nb series silicon nitride wet etching baths.

How the Process Works

A solution of 85 percent phosphoric acid and 15 percent de-ionized water is heated to a boil at about 160 degrees centigrade. Some of the water boils off as steam and part of the steam is condensed and placed back in the solution. Some steam escapes and de-ionized water has to be added periodically. The solution is kept at the boiling point by a heater and the process temperature can be tightly controlled. With the Modutek system, nitride etch is uniform and there are no “bumps” in the chemical concentration or temperature.

How Modutek Controls the Etching Process Safely and Accurately

The two challenges faced when operating a boiling phosphoric acid bath is the safe replacement of the de-ionized water lost to steam and an accurate control of the process. If water is added to the solution too quickly, the solution may stop boiling and a film of water can accumulate on top of the viscous acid. If the water of the film then suddenly mixes with the acid, a strong reaction can occur, and an explosion is possible. Adding water in this way also makes accurate control of the process difficult.

In the Modutek system, the heater that boils the solution is always switched on. The solution is always heated up to the boiling point and further heating only increases the boiling rate but not the temperature. This control strategy results in a clearly defined temperature for the boiling solution, which will always be at its boiling point.

The boiling point of a phosphoric acid and water solution varies with the concentration, increasing as the solution loses water to steam. A thermocouple in the bath senses the increasing temperature and gives the signal to add water. De-ionized water is slowly added to the boiling solution. Because the acid is boiling rapidly, the small amounts of water are immediately mixed in and don’t form a surface film. Adding water in this way is safe and controlling the process by monitoring the concentration through the temperature rise is accurate.

Additional Safety Features

Since the silicon nitride wet etching process depends on keeping the solution at the boiling point, additional safety interlocks in Modutek’s etching baths are in place to insure no water is added if the solution is not boiling. A thermocouple above the solution senses the presence of hot steam and shuts off the water valve if steam is not present. To ensure the solution does not overheat, another thermocouple switches off the heaters when the temperature of the solution reaches 170 degrees centigrade. With its advanced control system and the additional safety interlocks, Modutek has improved the silicon nitride wet etching process with better control, accuracy and increased safety.

 

How the KOH Etching Process is Improved Using Modutek’s Teflon Tanks

Among the different approaches available to foundries that create intricate integrated circuitry on semiconductor chips, etching with potassium hydroxide (KOH) is frequently preferred for the error-free mass-production that it allows.

The improvement in precision that the KOH etching process brings to semiconductor fabrication is attributable in large part to the use of deionized water. When employed with high alkalinity in excess of pH 12, this process can be thermally adjusted for precise degrees of etching.

How does the use of potassium hydroxide improve the semiconductor etching process?

While dry semiconductor etching processes do exist, they tend to present challenges in process control. Semiconductor wafers etched in this way tend to suffer from quality control issues. Dry etching processes can be difficult to build and run, as well — toxic and explosive chemicals often seen as byproducts, after all.

Greater precision

Etching with potassium hydroxide offers greater precision, and lends itself to improved control, as well.

The fluids employed in the KOH etching process are stored in tanks built into the equipment. One of the most cost-effective and meaningful choices to make in KOH etching processes: to place Teflon tanks within the etching equipment in order to hold the fluids employed. Teflon tanks can make the KOH etching process safer than other options available.

It is possible to structure the KOH etching process in a way to easily create repeat manufacturing projects, as well. When such projects come in from different clients, fabrication units can focus their strengths on setting up the equipment, worrying as little as possible about safety or reliability.

Opting for fewer contaminants and greater cleanliness

Customization is one of the greatest most significant improvements that Modutek brings to the KOH etching equipment business — one where generic, mass-produced Teflon tanks are the norm. Modutek’s Teflon tanks are especially capable of bringing impurity quantities to levels that are impressively low. The result is greater reliability and consistency over an extended period of time.

Greater control

Modutek’s Teflon tanks come with highly customizable temperature settings. Temperature control is achieved either through in-line heating and cooling equipment installed, or through immersion in liquid tanks. It is precisely varied anywhere between 30°C to 100°C. Temperature changes dialed up our achieved at a fast rate of 2°C a minute, on average (although tank size does affect response rates).

Modutek brings customization to the table

Modutek designs Teflon tanks for the specific needs of each client installation. Whether a fabrication plant requires temperature controlled recirculating baths for their KOH etching processes or temperature controlled static baths, Modutek’s Teflon tanks deliver both freedom from water loss and freedom from concentration deficiency.

From dual heating Teflon tanks for fast and consistent water-based etching, to the installation of drains and valves that enable rapid cleanup, high-tech remote data interfaces, controllers and timers, Modutek’s clients have their choice of every advance in KOH etching.

 

How to Improve Your Silicon Wet Etching Process

Semiconductor research labs and fabrication facilities employ high-precision silicon wet etching processes that are capable of delivering quality product in a consistent way. This is no mean feat: the microscopic structures etched on semiconductor wafers require processes that meet microscopic tolerances while reducing the minutest of impurities. Fabs are always on the lookout for improvements to make in these processes; the aim is to minimize the number of errors made during each of several processes. Results depend on constant efforts in the area of identifying the best etching processes, and utilizing the best equipment.

The Wafer Etching Process

The process of etching micro-circuitry on silicon wafers requires a complex multi-layered fabrication approach. It usually requires multiple cleaning, masking, and etching processes that involve the precise deposition of metal traces and components. At different stages along the way, these processes require the use of chemical baths of various kinds, each aimed at achieving different, specific results. At the end of one of these precisely designed processes, silicon wafers with traces, electrical connections and electronic components, all etched on a microscopic scale, emerge ready for market.

There are various requirements for an error-free process — precise control over the speed at which etching is done, and the ability to achieve extreme levels of cleanliness in the work areas in which etching is done, are two primary requirements. There are many others, as well.

Silicon nitride: Silicon nitride is applied to mask parts of wafers during the phosphoric acid etching process. Achieving greater precision in this process delivers superior results. In general, fabs do much better with the fabrication process when they possess over on-the-fly control over acid concentration and temperature.

Piranha etching: At semiconductor fabs, piranha etching is done using a mixture of piranha solution — a blend of hydrogen peroxide and sulfuric acid. Chemical baths need to be carefully controlled to supply the right chemical mix at the right time.

Potassium hydroxide: The etching process requires the use of potassium hydroxide solution in the creation of microscopic structures on semiconductor wafers. Achieving precise and error-free etches requires an ability to closely control the concentration of the solution, the temperature, the orientation of the silicon crystal and silicon purity. These variables can change during the etch process, and error-free results requires the ability to respond by speeding up or slowing down etch rate.

Buffered oxide etch: This is a process that employs hydrofluoric acid in addition to a buffering agent in order to etch fine masking films of silicon dioxide or silicon nitride. When correctly controlled, the process delivers a consistent and repeatable result that works with photoresist.

When it comes to improved silicon etching performance, the key to high-quality results is to utilize processing equipment from a vendor with proven experience and support. Modutek answers this requirement with 35 years in the field. Not only is Modutek able to supply the equipment, they are able to advise clients on the customizations needed to meet their requirements.

Choosing Equipment with the Right Features for Each Stage of the Wafer Etching Process

Modutek’s silicon wet etching equipment comes with some of the most advanced features on the market today:

Flow control and filtration control: Modutek’s precision acid filters are effective down to the 0.2 µm range and are able to work continuously to enable reuse of acid. This provides considerable savings in acid consumption.

Precision control of temperature: An ability to precisely control the temperature of an etching bath can result in lower error rates and reliable output. In any process, Modutek’s equipment comes with the ability to control temperatures to within 1 degree of required settings.

Precision tech design: Potassium hydroxide requires the use of Teflon tanks; piranha solution requires quartz. Modutek designs these tanks in a wide variety of configurations and sizes.

Modutek is dedicated to helping clients find ways to improve the efficiency of their silicon wet etching processes, improve productivity and output quality. To this end, Modutek’s offers extensive consultation and equipment customization needed to meet each customer’s requirements.

Etching Silicon Wafers Without Using Hydrofluoric Acid

Etching Silicon Wafers Without Hydrofluoric AcidHydrogen fluoride is an excellent etching chemical for silicon wafer fabrication, etching rapidly to remove silicon oxide, for example after an initial RCA clean. While highly effective, hydrofluoric acid is extremely dangerous. Its vapor can cause death and it is toxic enough that even a small area of skin exposed to the chemical can cause cardiac arrest. As a result, storage and handling is difficult and disposal problematic. Safety and environmental considerations have resulted in a search for alternatives. Depending on the silicon wet etching application, other chemicals may be suitable for replacing hydrofluoric acid and Modutek can help customers make the change by recommending equipment that supports alternative chemical processes.

Why Hydrofluoric Acid is Especially Dangerous

Hydrofluoric acid is extremely toxic and penetrates the skin to cause secondary effects that require medical attention. Its vapor can cause lungs to fill up with liquid and exposure to even small amounts can cause death. Neutralization and disposal is difficult and any mistakes run the risk of severe environmental contamination. Given the dangers, silicon fabrication facility owners, managers and process engineers are looking for alternative process chemicals.

While hydrofluoric acid is dangerous as a corrosive chemical, its added danger comes from its absorption into the body. It affects the nerves at sites where the skin has been exposed to the acid and victims may initially feel little pain as a result, often delaying treatment. At the same time, hydrofluoric acid can penetrate deep into the body and attack underlying tissue and bones, causing lasting damage. It also disrupts the calcium chemistry of the blood, eventually leading to cardiac arrest. Exposure of as little as 25 square inches of skin can result in deep burns that are slow to heal and in death if medical treatment is delayed.

Bare skin and the eyes are the most common areas of exposure. Treatment starts with extensive rinsing, for about 15 minutes, of the exposure site. Repeated application of calcium gluconate gel helps mitigate the effect on blood calcium. Anyone with more than four square inches of skin exposed should be admitted to hospital for monitoring of blood chemistry. Normal safety measures to avoid contact with hydrofluoric acid are to cover all skin and wear eye protection.

Hydrofluoric acid is hazardous waste and its discharge is tightly regulated. The acid must first be neutralized and then discharge limits on fluoride and metals must be observed. A complete neutralization process often starts with adding a basic solution to the acid and then precipitating out other materials until they fall within discharge limits. After discharge, the resulting sludge represents an additional waste problem. While other chemicals may be subject to similar discharge procedures, hydrofluoric acid represents an additional risk if neutralization is not carried out properly.

Possible Alternative Etching Solutions

Depending on the particular silicon wet etching application, other etchants may be substituted for hydrofluoric acid. Potassium hydroxide (KOH) is a safer chemical and can be used for etching in many applications.  Tetramethylammonium hydroxide (TMAH) and nitride etch are other possible alternatives that may be used.

Modutek can help facilitate a switch from hydrofluoric acid where possible. The company has over 35 years experience with silicon wafer fabrication equipment and has the in house expertise to advise customers about possible alternatives.

In addition to analyzing customer process needs and making recommendations, Modutek can supply the equipment required from their complete line of wet bench and chemical delivery stations. Modutek’s equipment, while able to handle hydrofluoric acid, is also designed to work with other chemical processes that don’t use it. Modutek can offer standard or customized components such as Teflon tanks or quartz baths to help customers wishing to use other chemicals where they can. Contact Modutek for a free consultation and quote on selecting the right equipment to support the silicon wet etching process for your application.

Why Quartz Baths Are Used in the Wafer Cleaning Process

Why Quartz Baths Are Used in the Wafer Cleaning ProcessThe cleaning of silicon wafers during semiconductor manufacturing uses strong, corrosive chemicals to remove deposits from the surface of the silicon. Critical factors for effective cleaning are an absence of contamination in the chemical bath, the impervious nature of the container and a tight control of the bath temperature. Baths made from high purity quartz don’t react with chemicals used in semiconductor manufacturing and are inert as a source of contamination. Quartz conducts heat well so fast temperature rise and accurate control are possible. A high-quality quartz bath is an ideal container for the semiconductor wafer cleaning process.

How Quartz Baths Are Used

The semiconductor manufacturing process involves multiple steps, each of which may require cleaning of the silicon wafer before or after the production process segment. Highly corrosive chemicals such as sulfuric acid, hydrogen chloride or hydrogen peroxide are used to remove materials such as organic residue from the surface of the wafers in preparation for manufacturing steps such as etching or diffusion. Effective cleaning is a critical factor in the success of semiconductor manufacturing because impurities or contaminating particles left on a wafer can lead to defective products or products of inferior quality.

During the cleaning process, the silicon wafers are immersed in chemicals within the quartz bath. Depending on the cleaning process, the baths may be heated, kept at a given temperature for a defined time period and chemicals may be re-circulated. For example, in RCA clean, wafers are first immersed in a mixture of ammonium hydroxide and hydrogen peroxide. These chemicals remove organic contaminants and particles from the surface of the silicon wafers. After rinsing and drying, the wafers are immersed in a mixture of hydrochloric acid and hydrogen peroxide. In this step metallic contaminants and particles are removed. The wafers are then cleaned for subsequent processing steps.

If particles remain on the wafers or if impurities are introduced during the cleaning process, manufacturing steps such as diffusion will be affected. With microscopic semiconductor structures, even tiny particles can obstruct an electrical connection or affect electrical characteristics. The semiconductor product may then fail prematurely or not work properly. When the quartz container is eliminated as a source of contamination, the focus is on the wafer cleaning process itself and its effectiveness in removing contaminants and particles.

How Quartz Baths Facilitate Reliable Cleaning

Quartz baths can meet all the criteria for effective cleaning of silicon wafers but they have to be designed well and constructed with top quality materials. Modutek series QFa re-circulating baths are made with semiconductor grade flame polished quartz to reduce the possibility of contamination. They feature quick, even heating and are available in a variety of standard as well as custom sizes. Operation is reliable and safe with excellent wafer cleaning performance and high quality output.

Operating characteristics include a temperature range of 30 to 180 degrees centigrade and the tanks can heat the bath at a rate of 2 degrees centigrade per minute. Temperature control is accurate within plus/minus 1 degree centigrade and heating is even through the bath. Standard tank sizes range from 7.75 inches to 21.5 inches a side with a depth of up to 14.5 inches. Custom sizes are available.

Modutek uses its experience of over 30 years designing quartz baths to deliver the highest quality baths with excellent cleaning performance. Modutek baths feature safe operation, reliable output and a low cost of ownership. The company can advise customers how best to meet their semiconductor wafer cleaning needs and can make specific proposals for solutions based on the company’s complete range of wet bench processing equipment.

How Teflon Tanks Are Used in Wet Processing Applications

How Teflon Tanks Are Used in Wet Processing ApplicationsModutek’s Teflon tanks are custom designed for use in new and existing wet processing stations. Their modular configuration allows easy integration in customer clean room facilities. Advanced PFA Teflon welding techniques reduce impurities and unwanted by-products in the process, and Modutek can supply heated models for use in processes that require temperature control. Standard carrier sizes are available for single or double capacity, and Modutek can design and build custom tanks for specific customer requirements. Additional options and features make Modutek’s Teflon tanks suitable for a variety of wet process applications.

Teflon Tank Configurations

Modutek offers three types of Teflon tanks:

  • The TT series are ambient temperature baths
  • The TI series are temperature controlled static baths
  • The TFa series are temperature controlled overflow recirculating baths

Modutek can work with customers to analyze their process requirements and recommend the best tank configuration. All tanks are manufactured from the highest quality material and come with first-class support from in house technicians at Modutek.

Temperature-Controlled Teflon Tanks

Modutek offers static and recirculating temperature-controlled Teflon tanks for KOH (potassium hydroxide) and TMAH (tetramethyl ammonium hydroxide) anisotropic etching of silicon. The heat sources can be in line and an immersion heater in the overflow weir. The tanks feature all-Teflon fluid paths and low level, high limit and high-temperature signaling. A drain interlock is standard.

The temperature control delivers fast heating of two to three degrees centigrade per minute within a range of 30 to 100 degrees centigrade. Process temperature control is accurate to within plus/minus 0.5 degrees and the tanks feature an optional Teflon refluxor with Teflon cooling coils. The fast and accurate temperature control system lets operators achieve excellent consistency and repeatability for temperature-sensitive processes such as TMAH and KOH etching.

Teflon Tank Features

Modutek designs their Teflon tanks for ease of use, convenient installation, quick repair and excellent compatibility with new or existing customer facilities. Specific features include:

  • 360-degree serration overflow
  • Manual cover with overlapping seal
  • Modular design
  • Minimal water loss
  • Consistent chemical concentration over time
  • One year warranty

The design of Modutek’s Teflon tanks results in fewer defects in output and a higher product quality overall.

Teflon Tank Options

Modutek tanks can be ordered with the following options:

  • A pneumatically operated automatic cover
  • Teflon gravity drain system
  • Aspirator valve system
  • An RS232 Interface
  • Remote operation timer switches
  • Temperature process controller/timer
  • Teflon refluxor with Teflon cooling coils
  • Magnetic stirrer for agitation
  • DI water or IPA spiking system

Benefits of the Modutek Teflon Tanks

Modutek’s design and configuration results in the following specific benefits:

  • Uniform heating throughout the bath
  • Accurate and rapid temperature control
  • Process etch variability wafer to wafer less than 2 percent
  • Modutek in house maintenance and repair support
  • Extensive customization to meet specific requirements

Based on the standard Teflon tank design, Modutek can use its design expertise to supply Teflon tanks of the highest quality, sized to customer specifications and with the features and options required for the customer’s application.

Modutek Support

With over 35 years experience in wet bench stations, Modutek can offer effective support for customer wet process applications. The company manufactures a full line of semiconductor fabrication equipment and can help customers analyze their needs. With its wet process expertise and its experienced technical personnel, Modutek can offer help with selecting the best possible wet bench equipment configuration. The company offers free consulting to ensure that customers select the right equipment. Whether it is Teflon tanks or a complete wet process semiconductor manufacturing line, Modutek can help determine what the requirements will be, suggest optimal solutions and deliver the appropriate equipment.

Tips on Improving Your Silicon Wafer Etching Process

Tips on Improving Your Silicon Wafer Etching ProcessSemiconductor manufacturing facilities and research labs need silicon wafer etching equipment that delivers accurate and repeatable results in a safe and reliable environment. The structures on semiconductor wafers and for micro-electromechanical systems (MEMS) have to be produced to meet tight tolerances and with no contamination by impurities or stray particles. An improved silicon wafer etching process depends on selecting the right etching process and using high-quality equipment, which are key factors for consistent output with a low rate of defects.

Silicon Wafer Etching Processes

Wafer etching is a multi-stage fabrication process and different chemical baths are used to achieve specific purposes. Process steps include cleaning, masking and etching of the wafers themselves or deposited metal. These steps result in the production of microscopic structures in the silicon wafer and in electrical connections where required. Key factors for improved etching performance are control of etching speed and the cleanliness of the fabrication environment.

Silicon nitride is used as a masking material and is etched with hot phosphoric acid. Key factors for improved results are the accurate control of the acid concentration and temperature through the addition of de-ionized water.

Piranha etching is carried out with a mixture of sulfuric acid and hydrogen peroxide. The etching solution cleans organic residue from silicon wafers and is often used to remove photoresist. Cleaning with piranha etching can be appropriate at various stages of the semiconductor fabrication process, and its effective application depends on the correct mixture and accurate control of the process.

The KOH etching process creates microscopic structures in the silicon using a solution of potassium hydroxide. Variables controlling the etch rate include bath temperature, KOH concentration, silicon crystal orientation and impurities in the silicon. Improved etching performance means tightly controlling the etch rate to get the precise structures needed.

Buffered oxide etch (BOE) uses hydrofluoric acid and a buffering agent to etch thin masking films of silicon nitride or silicon dioxide. If properly controlled, it results in a highly consistent and repeatable process that is compatible with photoresist.

The key to improving silicon etch performance is to use wet process equipment from a supplier that has the required experience and who can deliver high-quality equipment designed for excellent etching performance. Modutek has over 35 years experience in the field, and can advise customers on which equipment best supports their particular wet processing requirements and can offer standard or customized equipment as needed.

Etching Equipment Design Features

Choosing the right wafer etching process for each stage of semiconductor fabrication is important, but it is the design characteristics of the equipment that ensure improve etching results. Critical design features of Modutek’s etching equipment include the following:

  • Filtration and flow control. Filtered etch baths feature continuous filtration in the 10- to 0.2-micron range and reduced acid consumption.
  • Temperature control. Temperature controlled circulators can heat or cool an etching bath and keep the temperature at the required levels. Operating range is 10 to 60 degrees centigrade with an accuracy of plus/minus 1 degree.
  • Tank design. Teflon tanks for KOH etching are available in many configurations and in standard carrier sizes for single or double capacity. Quartz baths for a variety of etching applications including piranha clean are available in a range of sizes.

Modutek helps customers improve their silicon etching performance by advising them on the right equipment for their specific etching applications and by ensuring the equipment delivers accurate performance in a consistent way. When silicon etching processes are carried out reliably with repeatable results, facility productivity increases and output quality improves.