How Piranha Etch is Used in Silicon Wafer Cleaning

How Piranha Etch is Used in Silicon Wafer CleaningEditor’s Note: This article was originally published in December 2016 and has been updated with additional information and reposted in March 2023.

Silicon wafers are fabricated with repeated etching and cleaning steps to produce the micro-structures required for the final silicon semiconductor products. Piranha or SPM (sulfuric peroxide mix) solutions can clean organic material from wafers and oxidize most metals. The powerful chemical action that makes it a favorite for resist strip and for cleaning wafers with organic residue also makes it difficult to use. High-quality silicon wafer cleaning equipment designed to handle the corrosive chemicals safely is required for carrying out piranha etch safely and effectively.

What is Piranha Etch and How is it Used

Piranha etch is a highly corrosive mixture of concentrated sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) commonly used in the microelectronics industry to clean and etch silicon wafers. It is called “piranha” due to its aggressive nature, similar to the ferocious piranha fish found in the Amazon River.

The most common ratio is approximately three parts acid to one part peroxide, but solutions of up to seven parts acid to one part peroxide are sometimes used. The solution is highly exothermic and is prepared by slowly adding the peroxide to the acid. The mixture heats up rapidly and is often used at temperatures of around 130 degrees C. Once the operating temperature and the desired concentration are reached, the wet bench equipment must heat the solution to maintain the temperature and keep the etch rate constant.

Piranha etch is primarily used to remove organic and inorganic contaminants from silicon wafers, which can negatively affect the performance of electronic devices. The highly oxidizing nature of hydrogen peroxide and the dehydrating property of sulfuric acid make piranha etch highly effective in removing photoresist residues, heavy metals, and other contaminants that may be present on the surface of silicon wafers. The underlying surfaces are hydroxylated, making them hydrophilic or attractive to water, a characteristic that can be used in subsequent silicon semiconductor manufacturing process steps.

Piranha Etch Process Steps

The process of using piranha etch involves several steps. First, the silicon wafer is rinsed with deionized water to remove loose particles or dust. Then, the wafer is immersed in a piranha etch bath for a short period, typically 10-30 minutes, depending on the level of contamination. During this time, the piranha etch reacts with the contaminants on the wafer, breaking them down and removing them from the surface.

After the piranha etch treatment, the wafer is rinsed several times with deionized water to remove any remaining piranha etch solution. It is important to note that piranha etch is a very dangerous substance and should be handled with extreme caution. The mixture is highly reactive, exothermic and produces toxic fumes that can cause severe burns and respiratory problems. Proper safety equipment, such as gloves, goggles, and fume hoods, should always be used when working with piranha etch.

Spiking the Piranha Solution to Maintain Concentration

When a facility wants to reuse a piranha solution for an extended period, the solution must be spiked with extra hydrogen peroxide. Hydrogen peroxide is unstable in the solution and decomposes, reducing the etching power of the bath. Spiking with additional hydrogen peroxide lets operators use a piranha solution for up to eight hours rather than replacing it every two hours. Spiking saves money by conserving sulfuric acid but requires wet bench equipment to handle the process and the spiking.

Modutek’s Silicon Wafer Cleaning Solutions

Modutek’s wet bench and silicon wafer cleaning equipment provide wafer cleaning solutions. The company can supply standard equipment or customize wet bench solutions to meet specific customer requirements. Priorities are high-quality materials, excellent designs, and low cost of ownership to achieve optimized process results. Piranha wafer cleaning is supported with Modutek’s QFa high-temperature recirculating Quartz Tanks and the QA constant temperature baths. Both can be installed in a wet bench station, and the process can be controlled automatically, semi-automatically, or manually.

The QFa series high-temperature re-circulating Quarz Tanks provide fast even heating over a temperature range of 30 to 180 degrees C. The heat-up rate can be up to 2 degrees C per minute, and the temperature control is up to plus/minus 1 degree C. The quartz bath is made of flame-polished semiconductor-grade quartz insulated with silica fiber rated up to 1260 degrees C.

The QA series constant temperature quartz baths are made from the same materials with the same control characteristics as the QFa series, but they feature a magnetic stirrer, an aspirator valve system, a gravity drain, and a quartz bubbler. Both baths are available in standard sizes or can be custom-made to fit customer requirements.

Modutek’s Equipment Provides Safe and Reliable Operation

Modutek can provide a complete range of silicon wafer cleaning equipment that includes baths suitable for piranha cleaning applications. The equipment is designed with safe and reliable operation in mind, and the cleaning equipment eliminates contaminants and impurities to the greatest extent possible. Modutek’s wet bench equipment allows operators to use piranha cleaning methods safely to increase facility throughput while maintaining or improving output quality. Contact Modutek for a free quote or recommendations on using the right equipment for your wafer cleaning application.

Improving Silicon Wafer Cleaning with the Piranha Etch Process

The Piranha etch process removes organic material from silicon wafers rapidly and completely. Semiconductor manufacturing involves the repeated etching and cleaning of the silicon wafers and the Piranha mixture is a favorite method for the resist strip of wafers to prepare them for further processing. Modutek can provide high temperature re-circulating and constant temperature quartz baths and the company has developed a new “bleed and feed” control method to improve the silicon wafer cleaning process.

Modutek Quartz Baths for Piranha Etch

Modutek quartz baths are based on extensive experience and the use of the highest quality materials. The baths themselves are made of virgin boron-free fused quartz in a flame-retardant polypropylene housing. The QFa series is a high temperature re-circulating bath with a temperature range of 30 to 180 degrees centigrade while the Qa series is a constant temperature bath with the same temperature range.

Both bath series are temperature controlled to plus/minus 1 degree centigrade with a heat-up rate of 2 degrees centigrade per minute. Process control can be fully automated, semi-automatic or manual. The baths are available in a variety of sizes and Modutek will construct custom units as required. The units are ideal for Piranha etch applications because of their quick and even heating, accurate temperature control and extended vessel life.

Improving Piranha Process Control

The Piranha process uses an aggressive mixture of sulfuric acid and hydrogen peroxide to dissolve organic residue on the silicon wafers. The mixture is heated to about 130 degrees centigrade to improve the strip speed. Control of the cleaning is difficult because mixing sulfuric acid and hydrogen peroxide is exothermic and heats up the solution when the mixture is first prepared. As the mixture cools, it has to be heated to maintain its temperature and the strip rate.

The hydrogen peroxide in the mixture is unstable and decomposes to form water, diluting the mixture and slowing the strip rate. Heating the mixture increases the rate of decomposition of the hydrogen peroxide. To keep the concentration and the strip rate constant, the sulfuric acid and hydrogen peroxide mixture is periodically spiked with extra hydrogen peroxide. This addition keeps the strip rate elevated but the overall process is hard to control and the mixture has to be replaced completely about once per day. To improve the Piranha process and silicon wafer cleaning, the concentration and temperature variation issues have to be addressed.

The Modutek “Bleed and Feed” Process Control Method

Modutek has developed a method of improving control of the Piranha process by using a two tank system with a clean and a dirty tank. When the concentration of hydrogen peroxide goes down, a small amount of mixture from the dirty tank is drained and discarded. The drained amount is replaced from the clean tank. The stripping process can continue and the concentration is maintained at the desired level. The clean tank has its sulfuric acid and hydrogen peroxide replenished. All “feed and bleed” amounts are programmable to match specific process variables.

Benefits of the Process Change

The “bleed and feed” control method can be fully automated and the frequent addition of small amounts of sulfuric acid and hydrogen peroxide mixture keeps the strip rate constant and allows for continuous use of the mixture over an extended period of time. The benefits include:

  • Savings of chemicals can reach 75 percent while chemical purchase and disposal costs are correspondingly lower.
  • Process efficiency is increased due to less downtime for replacement of the chemicals.
  • Process results are improved due to a more constant strip rate.

As a leading semiconductor equipment manufacturer, Modutek provides customers with high quality equipment that offers the highest degree of process control. Modutek supports the new “bleed and feed” process change for Piranha strip in the company’s new wet bench stations. Call for a free consultation to discuss your specific process requirements.

Reviewed and Approved by Douglas Wagner
President & CEO, Modutek Corporation

Why Particle Removal is Essential in Silicon Wafer Cleaning

During silicon wafer processing, impurities and particles are deposited on wafer surfaces or are left over from previous process steps. Such particles can cause defects in the final semiconductor product. With the reduced size of today’s silicon wafer microstructures, even the tiniest particles can block etching and affect the diffusion processes. The result appears in the final semiconductor circuit as either as a defect or reduce quality and life expectancy of the product. As a result, the focus of many wafer cleaning operations is to leave the silicon wafer surface intact but free of contaminating particles.

How Particles are Removed from Silicon Wafer Surfaces

The removal of particles can be difficult because they often have a chemical or electrostatic affinity for the silicon surface. They are attracted to the silicon wafer because of electrostatic charges and specific mechanisms have to be used to dislodge and remove them. The smaller the particle, the more such attraction may play a role and the harder it is to remove every particle from the wafer.

Mechanisms to remove particles include silicon wafer cleaning with a chemical that reacts with the particles, cleaning with a solution that dissolves the particles or washing the particles from the wafer surface. In each case, a specific type of equipment is required and traditional standard processes can be used together with new technologies aimed at removing even the smallest particles.

Cleaning Processes

Many chemical processes used to clean silicon wafers have remained unchanged since they were first used 30 years ago. These methods use aggressive chemicals to remove contamination from the wafers, which are then rinsed with de-ionized water and dried. These methods remove most of the contaminants but are less effective in removing the smallest particles. Refined older methods and new technologies such as megasonic cleaning are now often used to complete the cleaning process.

Cleaning methods used at different stages of the silicon wafer fabrication process include the following:

  • The RCA clean process, often carried out in two steps called SC1 and SC2, prepares a wafer for further processing. SC1 cleans wafers with a mixture of ammonium hydroxide and hydrogen peroxide to remove organic residue. SC2 uses hydrochloric acid and hydrogen peroxide to remove metallic residues and particles.
  • The Piranha cleaning process removes large amounts of organic residue such as photoresist. It uses sulfuric acid and hydrogen peroxide in a particularly corrosive mixture that acts quickly but must be handled with care.
  • Megasonic cleaning dislodges particles and other contaminants using microscopic cavitation bubbles generated by a megasonic cleaning system. The bubbles form and collapse in time with the MHz sound waves, delivering a scrubbing action that overcomes particle attraction to the silicon wafer surface.
  • The Ozone cleaning process uses ozone to convert organic particles and contaminants to carbon dioxide. All organic traces on a wafer surface are completely removed, leaving the silicon wafer free from particles.

One of the most critical processes for silicon wafer cleaning is the pre-diffusion clean process that takes place just before the wafers are placed in the diffusion oven. Any of the above methods or a combination of cleaning methods can be used to ensure that wafers are free of particles and the diffusion will be even and consistent.

Equipment Used for Wafer Cleaning

Modutek’s wet bench technology supports all the above cleaning methods and can be provided within their manual, semi-automated or fully automatic systems. The company can offer equipment for traditional cleaning and for the new megasonic and ozone methods as well. All cleaning equipment is available in standard configurations but Modutek can also design custom products to meet the needs of any of their customers’ silicon wafer cleaning requirements. If you need highly reliable equipment to support your semiconductor manufacturing processes call Modutek for a free consultation or quote at 866-803-1533 or email Modutek@modutek.com.