MODUTEK CORPORATION

6387 San Ignacio Ave. San Jose, Ca. 95119 (408) 362-2000, <u>www.modutek.com</u>

23000 sq. ft. Facility, 1000 sq. ft. Clean Room

- Automating America and the World
- Engineering Wet Processing
 Equipment for the Semiconductor
 Industries future and beyond
- Standard Products
- Megasonic Units
- Custom Designed Products
- Spin Process System
- CNC Routing Capabilities
- Neutralization Systems
- Sub Contract Manufacture
- Field Service
- Repairs to existing equipment

MEGASONIC CLEANING SYSTEMS

- Megasonics have become an important and widely accepted cleaning method for contamination-sensitive products.
- Most manufacturers in the integrated circuit, hard drive, raw silicon, mask, flat panel display, and other industries affected by contamination have turned to megasonic cleaning to help meet stringent cleanliness requirements.
- Megasonic cleaning uses the piezoelectric effect to enable removal of sub-micron particles from substrates.

Cleaning is accomplished by several mechanisms;

- Acoustic Streaming
- Microstreaming
- Microcavitation
- Chemistry
- Acceleration Forces
- Standing Waves
- Radiation Pressure Force
- Resonance Cleaning

Note: Some are more important than others

Benefits of reducing the Boundary Layer

- Increased removal of sub 0.5µ particles Increased particle removal overall
- Increased transport of removed particles through increased acoustic streaming
- Higher chemistry refresh rate at the substrate surface resulting in faster cleaning
- Increased chemical access to small surface features for enhanced etch or strip applications
- More uniform oxide growth in SC1

Note: This Boundary Reducing Effect is especially important in removing small particles and accessing small surface features.

- Five key variables when using megasonics:
 - Chemical concentration
 - Temperature
 - Exposure time
 - Megasonic power
 - Flow dynamics
- Typical exposure times
 - 5 to 15 minutes for batch processing
 - $\frac{1}{2}$ to 2 minutes for single wafer

CHEMISTRY - ZETA POTENTIAL

• A measure of the repulsive force between a particle and a substrate

- Both positive
- Both negative
- One positive, one negative

Chemistry (pH) and surfactants can change the surface charge of a material. Different materials may react differently as pH is changed

Megasonic Power Coupling

Modutek Corporation Kaijo Transducers

- High Frequency 2 MHz, 950 kHz,
- Better Efficiency
- All Transducers fire simultaneously, therefore covering a larger area.
- Sub-micron Cleaning
 0.20µm

Megasonic Theory

- Reduces thickness of the hydrodynamic boundary layer near wafer surface
- Micro-cavitation and micro-streaming dislodge particles from the surface
- Acceleration force scrubs off particles
- Acoustic Streaming carries off dislodged particles and prevents reattachment

Megasonic Testing

Constants:

- Silicon Nitride Contamination
- 300mm Bare (non-patterned) Silicon Wafers
- 52 wafers ¹/₂ pitch
- 4 Quick Dump Rinses
- Surface Tension Gradient Dry
- Sensor Scan @0.12-0.20µ & 0.21-0.40µ

Variables:

- Continuous power
- Process times 3, 5, 7, 10 & 12 minutes
- 35°C & 45°C– dilute SC1 50:2:1

Megasonic Results

Cleaning Efficiency on 300mm Wafers ½ pitch / with Dilute SC-1 (50:2:1)

3,5,7,10 & 12 minutes / 2.76cm2 / 35°C / 4 QDR / STG Dry

Megasonic Results

Cleaning Efficiency Across the Cassette Dilute SC-1 (50:2:1) / 300mm Wafers / ½ pitch 3,5,7,10 & 12 minutes / 2.76cm² / 35° C / 4 QDR / STG Dry

Test Conclusions

- Cleaning Efficiencies of ≥97% at 0.12µ were achieved in all testing with cleaning times ≥5 minutes
- No appreciable improvement in cleaning ≥7 minutes
- Even with 35°C and shorter than industry standard times, cleaning efficiencies of ≥99% can be achieved (spec >97% @0.12µ)

Test Conclusions

- Cleans 300mm wafers with
 - Higher efficiency
 - In shorter times
 - Lower temperatures
 - Lower chemical concentrations
- Highest power is not always the answer
- Bounce Technology works
- In-Direct systems perform well with short times
- Reduces cleaning times with increased efficiency

Megasonic Cleaning System

- Applications: pre-diffusion, pre-EPI, monitor wafer clean, post laser scribe clean, side-wall polymer removal
 Cleaning efficiency: >97% @ .12 um
- Wafers: 150/200/300mm, Single, Dual, 52 wafer
- Substrates: Flat Panel Displays, Photo Mask, Rigid Disks, Optics and other

Halar Megasonic

Quartz / PVDF Quick Dump Rinser

- All Quartz Dump Rinser
 PVDF Housing Material
 Dual High Flow Dump Valves
- Indirect Megasonic
 Plate 950 kHz, 2mHz
- Direct Megasonic Plate
 950 kHz , 2 mHz

Quartz Megasonic

Quartz with circulation
Indirect design
Uniform up flow
Designed for high temp
Easy installation
All Teflon or quartz flow path

