Selecting Equipment for the KOH Wafer Etching Process

Selecting Equipment for the KOH Wafer Etching ProcessKOH etching is increasingly used for creating microscopic structures in silicon. The wafer etching process uses a 20 to 30 percent solution of potassium hydroxide to create cavities in the unmasked parts of a silicon wafer. KOH etching is comparatively safe and etching can be tightly controlled through regulation of the bath temperature and doping of the silicon. Semiconductor fabrication facilities favor this etching method because of its high precision, good repeatability and cost effectiveness.

How It Works

The silicon wafer is masked with a material impervious to KOH, usually silicon dioxide or silicon nitride. The mask is based on the layout of the structures and circuits of the final semiconductor product and determines where cavities will be etched. The silicon wafers are immersed in the KOH solution and the temperature is controlled to give the desired etch rate.

KOH etching is extremely sensitive to temperature variations at temperatures above 60 degrees centigrade, with the etch rate in microns per hour approximately doubling for every ten degree rise in temperature. A typical rate is 1 micron per minute for a bath at 80 degrees centigrade. Accurate control of the temperature is a key factor in precise etching results.

While varying the temperature can control the etch rate, the orientation of the crystal planes in the silicon and doping of the silicon with boron also influence the rate and direction of the etch. The anisotropic nature of the silicon crystal can be used to create slopes and shapes along the crystal planes and the etch can be stopped in specific locations with boron doping. This way KOH etching can create complex shapes and circuit paths for semiconductor products.

Modutek KOH Bath Equipment

Modutek supports KOH etching as one of its wafer etching process options in the company’s line of wet bench process equipment. The TFa and TT series Teflon heated tanks are ideal for the requirements of KOH etching. The tanks are available for standard carrier sizes for single or double capacity and Modutek can also build custom sizes if needed. The modular nature of the tanks means they can easily be integrated in any new or existing wet etching station.

The TFa series high temperature overflow tanks and the TT series static tanks are both PFA Teflon tanks with an all-Teflon fluid path. Heating can be inline or immersion heating in the overflow weir. The operating temperature range is from 30 to 100 degrees centigrade and the tanks can heat up at the rate of 2 to 3 degrees centigrade per minute. Temperature control accuracy is plus/minus 0.5 degrees centigrade and liquid levels and high temperatures are monitored. The high precision temperature control and the rapid heating rate ensure that heating is uniform throughout the bath.

Additional features and specifications of the Modutek KOH etching tanks include 360 degree overflow filtration through serration overflow, an optional condensing Teflon refluxor with Teflon cooling coils, a pneumatically actuated auto cover, an aspirator valve system and a Teflon gravity drain. An RS232 interface, temperature controllers and remote operation timer switches complete the remote operation capabilities.

Modutek can help customers considering KOH etching in their selection of the appropriate systems. The company has a complete range of wet bench process equipment, chemical handling systems and equipment repair capabilities. In addition to their standard lines, Modutek can customize components to meet the specific needs of their customers. Experienced company personnel can work with customers to design optimal configurations and layouts for their clean room facilities. The KOH etching tanks are the ideal solution for semiconductor fabricators that need to etch microstructures in silicon wafers.

How Megasonic Cleaning Improves the Silicon Wafer Cleaning Process

How Megasonic Cleaning Improves the Silicon Wafer Cleaning ProcessAs silicon microscopic circuits and structures shrink in size, the elimination of contaminants from becomes increasingly important. When silicon wafer cleaning is effective, it removes particles as small as 0.1 µm to prevent them from affecting the silicon fabrication process. Traditional wafer cleaning with chemicals may leave some of the smallest particles in place and production line output quality can suffer. The semiconductor components produced may be of inferior quality or fail completely. Megasonic cleaning with sound waves in the MHz range generated in a water cleaning solution can remove particles down to 0.1 µm in size and improve cleaning performance.

How the Megasonic Process Cleans

The Megasonic Cleaning System consists of a high-frequency generator, transducers that convert the electric signal from the generator to sound waves in the water, and a cleaning tank to hold the cleaning solution and the silicon wafers. Sound waves in the MHz frequency range travel through the cleaning liquid and generate microscopic cavitation bubbles in the low-pressure wave troughs. When the bubbles collapse in the high-pressure wave peaks, they produce tiny jets of water.

When the bubbles collapse near a wafer, the resulting jets hit the silicon and dislodge any particles adhering to the surface. The particles are carried away by the water currents and the microscopic bubbles are so numerous that all surfaces are cleaned. The bubbles and the cleaning effect are present throughout the liquid and they penetrate into holes, crevices and microscopic structures, cleaning completely.

Megasonic Cleaning Benefits

In addition to cleaning silicon wafers and removing microscopic particles more effectively than traditional cleaning methods, Megasonic Cleaning provides several other benefits over the use of chemicals. The rise in output quality is accompanied by lower costs, a safer process environment and shorter process times.

When a semiconductor fabrication facility uses fewer chemicals for cleaning wafers, costs decrease. The facility has to purchase smaller amounts of chemicals, storage costs are lower and costs for disposal are less. Depending on the process, Megasonic Cleaning may allow a facility to eliminate certain chemicals completely, resulting in even higher savings.

The Megasonic Cleaning process is safe and environmentally friendly. The megasonic waves and the cleaning solution do not present any danger to equipment or operators who can set a timer and come back when the cleaning process is finished. The water-based solution is not toxic and does not require special disposal. Compared to chemical cleaning, the storage and handling of Megasonic cleaning materials is safe and easy, power consumption is lower and less water is required.

Modutek’s Megasonic Cleaning System

The Modutek Megasonic Cleaning System was developed together with ultrasonic technology leader Kaijo Corporation to reflect the specific demands of silicon wafer cleaning. The high operating frequency in the MHz range ensures gentle but effective cleaning of delicate materials without pitting the silicon surface or damaging the silicon wafer structures.

Modutek’s partnership with Kaijo lets the company offer an integrated system that features the Quava Megasonic generator and transducer within Modutek’s cleaning baths. Megasonic’s baths are available in the indirect heating MSI series that can heat the cleaning solution up to 140 degrees centigrade while the direct heating MSD series can heat the cleaning solution up to 70 degrees centigrade. Both baths are ideal for submicron particle removal with a high power density and high efficiency.

The Megasonic System is available with 600 W, 900 W and 1200 W power ratings at the standard 950 kHz frequency. Frequencies of 200 kHz, 430 kHz, 750 kHz and 2 MHz are also available for applications that require the more robust cleaning action from the lower frequencies or for very delicate components at the higher frequency. In any case, Modutek can advise customers to make sure they select the ideal Megasonic Cleaning configuration for their specific silicon wafer cleaning applications.