Safely Controlling the Silicon Nitride Etching Process

Safely controlling the Silicon Nitride Etching ProcessSilicon nitride etch removes silicon nitride from silicon wafers during the fabrication process of semiconductor components. A solution of phosphoric acid in water etches silicon nitride rapidly and consistently as long as the temperature of the solution and the concentration of phosphoric acid are kept constant. Maintaining consistent process conditions during the silicon nitride wet etching process is difficult because adding water to phosphoric acid can result in an energetic explosive reaction. The accurate monitoring of the solution is extremely important for safe control of the process.

The Silicon Nitride Wet Etching Process

Silicon nitride is used as a mask to produce micro-structures and connections in semiconductor manufacturing. In most etching applications, the etch rate can be varied by changing the temperature or chemical concentration, but silicon nitride etch is best controlled at its boiling point and at a concentration of 85 percent phosphoric acid in a de-ionized water solution.

The phosphoric acid etching solution is a viscous liquid that is heated until it boils at about 160 degrees centigrade. The high temperature means some of the water will boil off and be lost as steam, increasing the acid concentration of the remaining liquid. As the concentration increases, the boiling point of the solution rises and water has to be added to keep the process variables constant.

The addition of water to the solution is dangerous because, if too much water is added at once, the solution stops boiling and the added water collects as a film above the viscous acid. As the temperature rises again and the acid starts boiling, the large quantity of water from the film mixes with the acid and may cause an explosive reaction.

Instead, the control system has to ensure that only small amounts of water are added at a time and these small amounts are immediately mixed with the remaining acid solution. Such a control strategy results in constant process characteristics, a safe operation and a high quality output.

How Modutek’s Nb Series Wet Etching Baths Ensure Safe Operation

Modutek has developed a bath control system that combines consistency with safe operation. For the Nb series etching baths, the phosphoric acid solution is kept boiling with a constantly-on heater that maintains the solution at its boiling point. As water evaporates and the acid concentration rises, the boiling point increases and the solution temperature goes up. The temperature rise is detected by a thermocouple and a small amount of water is added to the solution to bring the concentration back down.

Because the solution is constantly boiling, the small amount of water is immediately mixed in with the rest of the acid. The amount of water is too little to stop the solution from boiling and the heater is powerful enough to always maintain a vigorous boiling condition. To ensure that water is added only when the solution is boiling, a second thermocouple senses the presence of steam above the bath liquid and blocks the addition of water when no steam is present. A third thermocouple monitors the bath temperature to switch off the heater if the liquid overheats.

The Benefits of the Modutek Silicon Nitride Etch Bath

The advanced control system of Modutek’s Nb series baths allows semiconductor manufacturers and research labs to safely implement the silicon nitride wet etching process to achieve optimum consistency characteristics. The temperature and concentration of the etching bath remain within tight limits due to the two-level control, monitoring the temperature to correct the acid concentration.

Modutek offers the Nb series baths in their fully automatic, semi-automatic and manual wet bench stations as part of its complete line of wet process equipment. The company constantly works with customers to continuously develop improvements in wet process technology. Contact Modutek for a free consultation to discuss your specific process requirements.

How New Equipment Has Improved the Silicon Nitride Wet Etching Process

how-new-equipment-has-improved-the-silicon-nitride-wet-etching-processThe silicon nitride wet etching process is difficult to control safely but is a key component of semiconductor wafer manufacturing. The process uses phosphoric acid to remove silicon nitride masks from silicon wafers to allow the clean wafers to undergo further fabrication steps. The hot phosphoric acid and water mixture is unstable and requires periodic addition of small quantities of water, but adding water to phosphoric acid may produce a bump. Modutek has developed a new approach to control the nitride etching process safely and accurately while achieving high etching rates.

How the Silicon Nitride Wet Etching Process Works

The etching of silicon nitride masks with phosphoric acid is optimized at a temperature of 160 degrees centigrade for a mixture of 85 percent acid and 15 percent deionized water. At this temperature, the mixture boils and some water is lost as steam. The lost water has to periodically be replaced, but adding water to phosphoric acid can be dangerous. The water may not immediately mix with the acid, instead forming a film on top of the mixture. If the film suddenly mixes with the acid, introducing a large amount of water into the mixture at once, a bump can result.

In order to optimize etching performance small amounts of water are added periodically which immediately mix with the acid to maintain the temperature at the ideal 160 degrees centigrade. If too much water is added, the temperature of the mixture may drop and the mixture may stop boiling, allowing the water film to form and create a dangerous situation. If too little water is added, the temperature of the mixture will increase and even more water will be lost. Modutek has new equipment provides an innovative control strategy that addresses these issues and delivers excellent etching performance.

Modutek’s Nb Series Silicon Nitride Wet Etching Bath

Modutek’s new Nb series bath provides tight control of the bath temperature while ensuring a safe operation and superior etching of the silicon nitride masks. In addition to the new control strategy, the series Nb baths offer additional safety features that make sure the dangerous condition in which large amounts of water are mixed with hot phosphoric acid is avoided.

In their new silicon nitride wet etching equipment, Modutek uses the acid mixture concentration as a reference value for adding small amounts of deionized water. At normal operation, the bath heater is on and the mixture is always boiling at the normal mixture boiling point of 160 degrees centigrade.

The boiling point of the mixture varies with the concentration. As water is lost and the mixture concentration rises, the boiling point increases as well and the mixture temperature starts to rise above 160 degrees centigrade. This rise triggers the addition of a small amount of deionized water. Since the mixture is always boiling because the heater is always on, the deionized water is immediately mixed in with the boiling acid, the concentration of the acid is reduced and the mixture boiling point decreases back down to 160 degrees centigrade.

To guard against the addition of water when the mixture is not boiling, a thermocouple sensor above the boiling mixture detects the presence of steam and closes the water valve when no steam is present. This additional safety feature ensures that a dangerous water film cannot form even under abnormal conditions such as heather failure.

Modutek has been testing and fine tuning the new system with Nb silicon nitride wet etching baths to customers in manual, semi automated and fully automated wet bench stations. Semiconductor fabrication facilities and research centers using the new equipment have achieved an average etch rate of 65 angstroms per minute while limiting oxide etch as the controls ensure safe operation at a consistent and optimum operating point.

 

 

How the Silicon Nitride Wet Etching Process is Improved by Modutek

Silicon nitride is used as a mask when etching silicon wafers during the semiconductor manufacturing process. Before the silicon wafer can be processed further, the silicon nitride has to be removed. A solution of phosphoric acid and de-ionized water etches the silicon nitride while leaving the wafer unaffected. As a result, the silicon nitride is stripped from the wafer surface and a clean wafer is left for further fabrication steps.

To optimize the silicon nitride wet etching process, the phosphoric acid solution is kept at a high temperature. This means some of the de-ionized water boils off as steam and has to be replaced. Adding water to phosphoric acid can be extremely dangerous and can result in an explosion. In addition, keeping the temperature of the solution constant is important for accurate control of the stripping process. Modutek has improved both the safety and the control of the nitride wet etching process with its Nb series silicon nitride wet etching baths.

How the Process Works

A solution of 85 percent phosphoric acid and 15 percent de-ionized water is heated to a boil at about 160 degrees centigrade. Some of the water boils off as steam and part of the steam is condensed and placed back in the solution. Some steam escapes and de-ionized water has to be added periodically. The solution is kept at the boiling point by a heater and the process temperature can be tightly controlled. With the Modutek system, nitride etch is uniform and there are no “bumps” in the chemical concentration or temperature.

How Modutek Controls the Etching Process Safely and Accurately

The two challenges faced when operating a boiling phosphoric acid bath is the safe replacement of the de-ionized water lost to steam and an accurate control of the process. If water is added to the solution too quickly, the solution may stop boiling and a film of water can accumulate on top of the viscous acid. If the water of the film then suddenly mixes with the acid, a strong reaction can occur, and an explosion is possible. Adding water in this way also makes accurate control of the process difficult.

In the Modutek system, the heater that boils the solution is always switched on. The solution is always heated up to the boiling point and further heating only increases the boiling rate but not the temperature. This control strategy results in a clearly defined temperature for the boiling solution, which will always be at its boiling point.

The boiling point of a phosphoric acid and water solution varies with the concentration, increasing as the solution loses water to steam. A thermocouple in the bath senses the increasing temperature and gives the signal to add water. De-ionized water is slowly added to the boiling solution. Because the acid is boiling rapidly, the small amounts of water are immediately mixed in and don’t form a surface film. Adding water in this way is safe and controlling the process by monitoring the concentration through the temperature rise is accurate.

Additional Safety Features

Since the silicon nitride wet etching process depends on keeping the solution at the boiling point, additional safety interlocks in Modutek’s etching baths are in place to insure no water is added if the solution is not boiling. A thermocouple above the solution senses the presence of hot steam and shuts off the water valve if steam is not present. To ensure the solution does not overheat, another thermocouple switches off the heaters when the temperature of the solution reaches 170 degrees centigrade. With its advanced control system and the additional safety interlocks, Modutek has improved the silicon nitride wet etching process with better control, accuracy and increased safety.