Commercial Market Opportunities for MEMS Technology

Using KOH Etching for Batch ProcessingMicro-electro-mechanical systems (MEMS) is a technology that incorporates the use of microscopic devices ranging in size from several millimeters to less than one micron. They usually have both electrical and mechanical functions and often include parts that can move in response to process conditions, commands from outside the structure or commands from integrated electronics. Typical miniaturized MEMS devices include sensors, actuators and other microscopic structures manufactured on silicon wafers using similar techniques as for semiconductors. They are popular because they are inexpensive to fabricate and are easily integrated into systems containing electronic controls, often on the same silicon wafer.

MEMS Applications

MEMS were first used in the automotive industry and then found increased application in the medical and optical fields. Typical macroscopic functions that were taken over by MEMS counterparts were pressure sensors, inertial sensors and chemical sensors. The MEMS sensors were less expensive to manufacture and performed better than the corresponding large sensors. In addition, different sensors could be placed on one silicon wafer along with signal processing electronics. For example, one unit could measure chemical pressure, detect impurities and generate alarm signals.

As MEMS fabrication methods became more sophisticated, the systems were able to take on additional functions and include different structures. For example, today’s MEMS can include mirrors, gears, pumps, nozzles and valves. Associated electronics can evaluate the signals, perform complex analysis and send results to external receivers via radio frequency elements. Such devices are found in the automotive industry in car airbags, tires and fuel systems. Technical products such as ink jet printers, digital projectors, bar code readers and display screens use MEMS to reduce costs and miniaturize components. Medical systems and devices use the miniature MEMS for diabetic evaluation, insulin delivery, blood analysis and needle less injectors. As the number of applications increases, the market for MEMS continues to grow as does the interest in inexpensive, reliable and rapid fabrication methods.

How MEMS are Produced

To create the microscopic structures that make up MEMS, manufacturers use technology similar to that used to produce microelectronics. For silicon wafer based MEMS, the wafers are masked, etched and cleaned in multiple steps. Silicon wet etching is one method that offers a number of advantages.

Wet etching with potassium hydroxide, or KOH etching, is inexpensive and reliable. KOH is safe and etches quickly. Repeatability is good and the process can be controlled by changing the temperature, the concentration of KOH, the crystal plane orientation of the silicon and the doping concentration. The KOH process allows for very precise etching and it can be automated. Other methods of creating microscopic structures on silicon wafers are more expensive, more risky or not as reliable.

Modutek’s Support for the KOH Etching Process

Modutek offers a variety of wet bench processing options including KOH etching. The company’s KOH silicon etching tank is designed and manufactured in house and can be built to customer specifications to satisfy specific wet process requirements. Its design emphasizes cleanliness with an all-PFA construction and consistency in the process to deliver accurate etching results.

The tanks are manufactured to reduce impurities and contaminants to a minimum with the PFA sheet material welded together using advanced welding techniques. The resulting process tanks deliver excellent performance and high quality output. Custom installations to work with existing wet bench equipment are available. Modutek uses its experience in the wet bench process to ensure that customer needs are met and the equipment functions as expected. If you have challenging wet processing applications contact Modutek for a free quote or consultation on solutions that will address your requirements.

Using KOH Etching for Batch Processing

Using KOH Etching for Batch ProcessingEtching baths with varying concentrations of potassium hydroxide (KOH) and controlled temperatures are used in creating microscopic structures on silicon wafers. Modutek can supply equipment such as PFA Teflon tanks, circulation and filtering systems and cassette handling equipment that supports KOH etching. The company designs and builds individualized systems for customers who want to use KOH etching and the resulting systems deliver accurate control, high repeatability, consistent performance and superior output quality.

The KOH Etching Process
The KOH etching process is well understood and is a preferred method for creating silicon wafer nano structures for semiconductor manufacturing and in research facilities. The process delivers controlled and uniform results with high precision and it is relatively safe.

The silicon surface is masked to allow etching and cavity creation in specific areas according to the layout of the final semiconductor product. The etch rate can be controlled by varying the concentration of KOH and the bath temperature. KOH etching is also impacted by the following:

  • The lattice planes of the crystalline silicon
  • Boron doping of the silicon
  • The presence of atomic defects in the silicon crystal
  • Natural impurities

Orienting the lattice planes in a particular direction can influence and control the direction of the etching and the shape of the cavities created in the silicon. Similarly, boron doping can be used to stop etching in a particular direction. Together with the mask, these factors permit the creation of cavities of the required shapes and orientations. Defects in the silicon crystal or natural impurities may reduce the quality of the final product and can result in defective items.

Advantages of KOH Etching
KOH etching provides excellent results and is used extensively because of the following advantages:

  • Safe and easy to handle
  • Rapid etching
  • Excellent reproducibility
  • Low cost
  • High precision when process variables are tightly controlled

Modutek can supply equipment that builds on the listed advantages to deliver corresponding benefits to the customer.

Modutek’s KOH Etching Process Equipment
Modutek’s wet bench technology supports KOH processing, and Modutek examines each request in detail before building the equipment for a particular application. This includes the KOH processing tank, the recirculating system and the silicon wafer handling. Sizes, capacities and control characteristics are adjusted for the customer’s requirements.

The systems supplied by Modutek use the latest technology to provide high accuracy and excellent output quality. Etch rates can be controlled precisely and etch uniformity is guaranteed. Even long etch times, such as up to 3 days, can be handled reliably and safely.

Modutek’s KOH processing tanks are PFA Teflon with all-Teflon fluid paths. The tanks are manufactured onsite using advanced PFA sheet welding techniques designed to minimize impurities and unwanted by-products. The tanks are available as static or as recirculating baths.

The static baths can be ambient temperature baths or temperature controlled from 30 to 100 degrees centigrade. The recirculating temperature controlled baths feature heat-up rates of 2 to 3 degrees centigrade per minute and a temperature control accuracy of plus/minus 0.5 degrees centigrade. The available semi automatic cassette handling reduces costs and increases reliability.

In each case Modutek makes sure that the equipment supplied fits into the existing or a new installation and is compatible with any other wet processing systems. Modutek’s specialists work to ensure the supplied equipment satisfies the customer’s requirements and meets or exceeds performance expectations.