Using Modutek’s Teflon Tanks with KOH and TMAH Etching Processes

Using Modutek’s Teflon® Tanks with KOH and TMAH Etching ProcessesEditor’s Note: This article was originally published in June 2014 and has been updated with additional information and reposted in March 2023.

KOH (potassium hydroxide) and TMAH (tetramethylammonium hydroxide) are two commonly used chemicals for etching silicon, glass, and other materials. The etching process involves dissolving the surface of the material, leaving behind a desired pattern or shape. When using these chemicals, it is important to choose a tank material that is resistant to their corrosive properties, such as Teflon®.

Modutek provides Teflon® tanks that are well-suited for use with both KOH etching and TMAH etching processes. These tanks are highly resistant to chemical corrosion, making them a safe and reliable option for handling these caustic substances. However, there are several additional considerations that should be kept in mind when using KOH and TMAH for etching.

Etching Rates and Material Compatibility

Another important consideration when using KOH and TMAH for etching is the etching rate. The rate at which these chemicals etch materials can be affected by various factors, including the concentration of the solution, the temperature, and the surface orientation of the material being etched. Proper optimization of these factors is necessary to achieve the desired etching rate and profile.

It is also important to consider the compatibility of the material being etched with the chosen etchant. While KOH and TMAH can etch a wide range of materials, not all materials are compatible with these etchants, and some may require specialized etching solutions. Prior to using these chemicals, it is important to check the compatibility of the material being etched with the chosen etchant.

After etching, residues may be left on the surface of the material being etched. These residues can be removed using a variety of techniques, such as rinsing with deionized water or using a plasma cleaner. The choice of technique will depend on the nature of the residue and the material being etched.

Tank Maintenance and Safety Considerations

Proper tank maintenance is essential for ensuring the longevity of Teflon® tanks used in KOH and TMAH etching processes. The surface of the tank should be kept free from scratches and cleaned regularly with appropriate cleaning agents. Additionally, the tanks should be checked for leaks and other damage periodically to ensure that they remain in good condition.

It is important to take appropriate safety precautions when handling and using these chemicals. Both KOH and TMAH can be dangerous if not handled properly, so it is essential to wear protective gear such as gloves, safety goggles, and lab coats. Proper ventilation should also be used which can be provided with chemical fume hoods. Additionally, proper chemical waste disposal procedures should be followed to ensure the safe disposal of these substances.

Modutek’s Equipment Support for KOH and TMAH Etching

Modutek’s TFa and TI series PFA Teflon® Tanks, and other wet bench equipment, fully support KOH etching and TMAH etching processes.  These Teflon® Tanks are designed together with other wet bench equipment to decrease impurities and unwanted byproducts due to advanced welding techniques with PFA sheet material. Continual adjustments to the Si etching process are not necessary after the initial process has been established. Modutek constructs all Teflon® Tanks and related equipment per individual customer specifications, and routinely design products that are compatible with a customer’s existing wet bench equipment.

Modutek’s Teflon® Tanks have an operating temperature range from 30 – 100º C, with a process temperature control of ± 0.5º C and a heat-up rate from 2-3º C per minute (depending on the size of the system).  The modular design allows for new installation or upgrades into any wet etching station configuration.

Teflon® Tank Configurations that Support KOH and TMAH Etching:

  • Temperature Controlled Re-circulating Baths (TFa Series)
  • Temperature Controlled Static Baths (TI Series)

Teflon® Tank design features:

  • Manual cover with overlapping seal
  • Minimizes water lost
  • No concentration deficiency over a long etch time

Heat source options include: 

  • Teflon® inline heating
  • Immersion heating in overflow weir for TFa Series and main tank for TI Series

Custom Teflon® Tanks and Additional Options: Static KOH Etching bath with condensing coils

  • Custom size Teflon® tanks can also be built to match any size (no limitations)
  • Bottom drain features
  • Magnetic stirrer for agitation (TI and TT series)
  • Water condensing refluxor system available on all baths
  • Auto lid feature
  • DI water or IPA spiking system available

Benefits of Modutek’s Teflon® Tanks:

  • Modular design
  • Two available heat sources
  • All Teflon® fluid path
  • Process temperature control of ± 0.5º C
  • Process etch uniformity wafer to wafer <2%
  • In-house heater maintenance and repair
  • 360-degree overflow filtration
  • Uniform heating throughout the bath

KOH etching tank with condensing coils and semi auto robotModutek provides world-class service, installation, and support for all Teflon® Tanks and related wet bench equipment. In addition, Modutek provides quality products that focus on reliability, precision, throughput, usability, and up-time. For more information contact Modutek for a free quote or consultation.

Advantages of Using the KOH Etching Process

Advantages of Using the KOH Etching Process for Silicon EtchingThe KOH etching process uses a potassium hydroxide solution to etch silicon wafers and produce microscopic structures in the silicon. In subsequent semiconductor fabrication steps, the micro structures are used in the manufacture of integrated circuits, processors and other electronic devices.

Compared to other etching processes KOH etching is comparatively safe, etches silicon rapidly and can be tightly controlled. These characteristics are especially important for batch processing when a process step has to be reproduced precisely many times. While other chemical processes are required for specific semiconductor cleaning and etching steps, industrial plants and research facilities prefer the KOH process for general silicon etching.

How the KOH Etching Process Works

The KOH solution is prepared by adding KOH to water in an etching tank made of material impervious to aggressive chemicals. Silicon wafers are masked with silicon nitride or silicon dioxide, substances that the KOH solution does not etch. When the wafers are immersed in the KOH solution, silicon is removed from the areas that are not masked by the chemical action of the KOH etching solution.

The etch rate can be controlled by changing the concentration of the solution and by changing the temperature. The concentration is fixed once the process is established and is usually around a 30% solution by weight, but may be as low as 10% and as high as 50%. Typically the solution temperature is about 60 to 80 degrees centigrade and the etch rate increase is very sensitive to an increase in temperature.

Other factors influencing the etch rate are the crystal lattice planes of the silicon and the presence of boron doping. Different crystal lattice orientations are etched at different rates so that the crystal lattice planes influence the design of the masks and their placement. Boron doping can be used to stop the etching in a specific direction. Taken together, all the ways the etch rate can be controlled allow the creation of complex shapes in the silicon.

Controlling KOH Etching

Obtaining the desired etching results from the KOH process can be divided into two groups of control measures. The concentration, doping and lattice orientation are determined initially before the process starts and establishes itself. At that point, temperature control can still change the etching rate. The initial control measures can be put in place with the required precision, concentration and other characteristics but the temperature of the etching solution must be controlled accurately on a continuing basis.

Because the KOH etching process is very temperature sensitive, maintaining the temperature at the exact set point is important. The temperature controller must be accurate during the process and also from one batch to the next. Tight control during the etching process ensures that the etch rate remains constant while precisely keeping the same temperature for a given set point from one batch to the next ensures accurate reproducibility of process conditions and identical output across different batches.

Modutek’s Teflon Silicon Etch Tanks

Using Modutek’s Teflon tanks allows operators to fully benefit from the advantages of KOH etching. The tanks are designed with KOH etching in mind and feature a wide temperature range, tight temperature control and rapid heating. Custom sizes are available and custom installations can be designed to fit any new or existing wet bench application.

Heating in Modutek’s Teflon tanks is either in line or through an immersion heater in the overflow weir. Temperatures can be controlled to plus/minus 0.5 degrees centigrade and the temperature range is 30 to 100 degrees centigrade. The heating rate is 2 to 3 degrees per minute, depending on the size of the system, and heating is even throughout the bath. Since temperature control is a key requirement for successful KOH etching, these system characteristics allow for excellent reproducibility between batches and for the precise control needed for high quality output.

Apart from excellent temperature controls, Modutek’s Teflon tanks feature all TFA Teflon with advanced manufacturing techniques designed to minimize contamination. Options such as an auto lid feature or a condensing refluxor are available if needed. Modutek Teflon tanks are an ideal solution for KOH etching applications and the company can help select the model and options that best satisfy specific customer needs. Contact Modutek for a free consultation on selecting the right equipment for specific process requirements.

Reviewed and Approved by Douglas Wagner
President & CEO, Modutek Corporation