Tips on Improving Your Silicon Wafer Etching Process

Tips on Improving Your Silicon Wafer Etching ProcessSemiconductor manufacturing facilities and research labs need silicon wafer etching equipment that delivers accurate and repeatable results in a safe and reliable environment. The structures on semiconductor wafers and for micro-electromechanical systems (MEMS) have to be produced to meet tight tolerances and with no contamination by impurities or stray particles. An improved silicon wafer etching process depends on selecting the right etching process and using high-quality equipment, which are key factors for consistent output with a low rate of defects.

Silicon Wafer Etching Processes

Wafer etching is a multi-stage fabrication process and different chemical baths are used to achieve specific purposes. Process steps include cleaning, masking and etching of the wafers themselves or deposited metal. These steps result in the production of microscopic structures in the silicon wafer and in electrical connections where required. Key factors for improved etching performance are control of etching speed and the cleanliness of the fabrication environment.

Silicon nitride is used as a masking material and is etched with hot phosphoric acid. Key factors for improved results are the accurate control of the acid concentration and temperature through the addition of de-ionized water.

Piranha etching is carried out with a mixture of sulfuric acid and hydrogen peroxide. The etching solution cleans organic residue from silicon wafers and is often used to remove photoresist. Cleaning with piranha etching can be appropriate at various stages of the semiconductor fabrication process, and its effective application depends on the correct mixture and accurate control of the process.

The KOH etching process creates microscopic structures in the silicon using a solution of potassium hydroxide. Variables controlling the etch rate include bath temperature, KOH concentration, silicon crystal orientation and impurities in the silicon. Improved etching performance means tightly controlling the etch rate to get the precise structures needed.

Buffered oxide etch (BOE) uses hydrofluoric acid and a buffering agent to etch thin masking films of silicon nitride or silicon dioxide. If properly controlled, it results in a highly consistent and repeatable process that is compatible with photoresist.

The key to improving silicon etch performance is to use wet process equipment from a supplier that has the required experience and who can deliver high-quality equipment designed for excellent etching performance. Modutek has over 35 years experience in the field, and can advise customers on which equipment best supports their particular wet processing requirements and can offer standard or customized equipment as needed.

Etching Equipment Design Features

Choosing the right wafer etching process for each stage of semiconductor fabrication is important, but it is the design characteristics of the equipment that ensure improve etching results. Critical design features of Modutek’s etching equipment include the following:

  • Filtration and flow control. Filtered etch baths feature continuous filtration in the 10- to 0.2-micron range and reduced acid consumption.
  • Temperature control. Temperature controlled circulators can heat or cool an etching bath and keep the temperature at the required levels. Operating range is 10 to 60 degrees centigrade with an accuracy of plus/minus 1 degree.
  • Tank design. Teflon tanks for KOH etching are available in many configurations and in standard carrier sizes for single or double capacity. Quartz baths for a variety of etching applications including piranha clean are available in a range of sizes.

Modutek helps customers improve their silicon etching performance by advising them on the right equipment for their specific etching applications and by ensuring the equipment delivers accurate performance in a consistent way. When silicon etching processes are carried out reliably with repeatable results, facility productivity increases and output quality improves.